Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.212
Filtrar
1.
Virulence ; 15(1): 2333562, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38622757

RESUMO

The Picornaviridae are a large group of positive-sense, single-stranded RNA viruses, and most research has focused on the Enterovirus genus, given they present a severe health risk to humans. Other picornaviruses, such as foot-and-mouth disease virus (FMDV) and senecavirus A (SVA), affect agricultural production with high animal mortality to cause huge economic losses. The 3Dpol protein of picornaviruses is widely known to be used for genome replication; however, a growing number of studies have demonstrated its non-polymerase roles, including modulation of host cell biological processes, viral replication complex assembly and localization, autophagy, and innate immune responses. Currently, there is no effective vaccine to control picornavirus diseases widely, and clinical therapeutic strategies have limited efficiency in combating infections. Many efforts have been made to develop different types of drugs to prohibit virus survival; the most important target for drug development is the virus polymerase, a necessary element for virus replication. For picornaviruses, there are also active efforts in targeted 3Dpol drug development. This paper reviews the interaction of 3Dpol proteins with the host and the progress of drug development targeting 3Dpol.


Assuntos
Enterovirus , Vírus da Febre Aftosa , Infecções por Picornaviridae , Animais , Humanos , Produtos do Gene pol/metabolismo , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/metabolismo , Replicação Viral , RNA Viral/genética
2.
Sci Rep ; 14(1): 7929, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575673

RESUMO

Foot and mouth disease (FMD) is a highly contagious, endemic, and acute viral cattle ailment that causes major economic damage in Ethiopia. Although several serotypes of the FMD virus have been detected in Ethiopia, there is no documented information about the disease's current serostatus and serotypes circulating in the Wolaita zone. Thus, from March to December 2022, a cross-sectional study was conducted to evaluate FMDV seroprevalence, molecular detection, and serotype identification in three Wolaita Zone sites. A multistage sample procedure was used to choose three peasant associations from each study region, namely Wolaita Sodo, Offa district, and Boloso sore district. A systematic random sampling technique was employed to pick 384 cattle from the population for the seroprevalence research, and 10 epithelial tissue samples were purposefully taken from outbreak individuals for molecular detection of FMDV. The sera were examined using 3ABC FMD NSP Competition ELISA to find antibodies against FMDV non-structural proteins, whereas epithelial tissue samples were analyzed for molecular detection using real-time RT-PCR, and sandwich ELISA was used to determine the circulating serotypes. A multivariable logistic regression model was used to evaluate the associated risk variables. The total seroprevalence of FMD in cattle was 46.88% (95% CI 41.86-51.88), with Wolaita Sodo Town having the highest seroprevalence (63.28%). As a consequence, multivariable logistic regression analysis revealed that animal age, herd size, and interaction with wildlife were all substantially related to FMD seroprevalence (p < 0.05). During molecular detection, only SAT-2 serotypes were found in 10 tissue samples. Thus, investigating FMD outbreaks and identifying serotypes and risk factors for seropositivity are critical steps in developing effective control and prevention strategies based on the kind of circulating serotype. Moreover, further research for animal species other than cattle was encouraged.


Assuntos
Doenças dos Bovinos , Vírus da Febre Aftosa , Febre Aftosa , Humanos , Bovinos , Animais , Vírus da Febre Aftosa/genética , Estudos Soroepidemiológicos , Estudos Transversais , Etiópia/epidemiologia , Doenças dos Bovinos/diagnóstico , Doenças dos Bovinos/epidemiologia , Febre Aftosa/diagnóstico , Febre Aftosa/epidemiologia , Sorogrupo , Surtos de Doenças/veterinária , Animais Selvagens , Anticorpos Antivirais
3.
Arch Virol ; 169(5): 101, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630189

RESUMO

Foot-and-mouth disease is a highly contagious disease affecting cloven-hoofed animals, resulting in considerable economic losses. Its causal agent is foot-and-mouth disease virus (FMDV), a picornavirus. Due to its error-prone replication and rapid evolution, the transmission and evolutionary dynamics of FMDV can be studied using genomic epidemiological approaches. To analyze FMDV evolution and identify possible transmission routes in an Argentinean region, field samples that tested positive for FMDV by PCR were obtained from 21 farms located in the Mar Chiquita district. Whole FMDV genome sequences were obtained by PCR amplification in seven fragments and sequencing using the Sanger technique. The genome sequences obtained from these samples were then analyzed using phylogenetic, phylogeographic, and evolutionary approaches. Three local transmission clusters were detected among the sampled viruses. The dataset was analyzed using Bayesian phylodynamic methods with appropriate coalescent and relaxed molecular clock models. The estimated mean viral evolutionary rate was 1.17 × 10- 2 substitutions/site/year. No significant differences in the rate of viral evolution were observed between farms with vaccinated animals and those with unvaccinated animals. The most recent common ancestor of the sampled sequences was dated to approximately one month before the first reported case in the outbreak. Virus transmission started in the south of the district and later dispersed to the west, and finally arrived in the east. Different transmission routes among the studied herds, such as non-replicating vectors and close contact contagion (i.e., aerosols), may be responsible for viral spread.


Assuntos
Vírus da Febre Aftosa , Picornaviridae , Animais , Vírus da Febre Aftosa/genética , Argentina/epidemiologia , Teorema de Bayes , Filogenia
4.
PLoS Pathog ; 20(3): e1012104, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38512977

RESUMO

The interaction between foot-and-mouth disease virus (FMDV) and the host is extremely important for virus infection, but there are few researches on it, which is not conducive to vaccine development and FMD control. In this study, we designed a porcine genome-scale CRISPR/Cas9 knockout library containing 93,859 single guide RNAs targeting 16,886 protein-coding genes, 25 long ncRNAs, and 463 microRNAs. Using this library, several previously unreported genes required for FMDV infection are highly enriched post-FMDV selection in IBRS-2 cells. Follow-up studies confirmed the dependency of FMDV on these genes, and we identified a functional role for one of the FMDV-related host genes: TOB1 (Transducer of ERBB2.1). TOB1-knockout significantly inhibits FMDV infection by positively regulating the expression of RIG-I and MDA5. We further found that TOB1-knockout led to more accumulation of mRNA transcripts of transcription factor CEBPA, and thus its protein, which further enhanced transcription of RIG-I and MDA5 genes. In addition, TOB1-knockout was shown to inhibit FMDV adsorption and internalization mediated by EGFR/ERBB2 pathway. Finally, the FMDV lethal challenge on TOB1-knockout mice confirmed that the deletion of TOB1 inhibited FMDV infection in vivo. These results identify TOB1 as a key host factor involved in FMDV infection in pigs.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Animais , Camundongos , Receptores ErbB/metabolismo , Febre Aftosa/genética , Vírus da Febre Aftosa/genética , Regulação da Expressão Gênica , RNA Guia de Sistemas CRISPR-Cas , Suínos
5.
Microbiol Spectr ; 12(3): e0365823, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38323828

RESUMO

The internal ribosome entry site (IRES) element constitutes a cis-acting RNA regulatory sequence that recruits the ribosomal initiation complex in a cap-independent manner, assisted by various RNA-binding proteins and IRES trans-acting factors. Foot-and-mouth disease virus (FMDV) contains a functional IRES element and takes advantage of this element to subvert host translation machinery. Our study identified a novel mechanism wherein RALY, a member of the heterogeneous nuclear ribonucleoproteins (hnRNP) family belonging to RNA-binding proteins, binds to the domain 3 of FMDV IRES via its RNA recognition motif residue. This interaction results in the downregulation of FMDV replication by inhibiting IRES-driven translation. Furthermore, our findings reveal that the inhibitory effect exerted by RALY on FMDV replication is not attributed to the FMDV IRES-mediated assembly of translation initiation complexes but rather to the impediment of 80S ribosome complex formation after binding with 40S ribosomes. Conversely, 3Cpro of FMDV counteracts RALY-mediated inhibition by the ubiquitin-proteasome pathway. Therefore, these results indicate that RALY, as a novel critical IRES-binding protein, inhibits FMDV replication by blocking the formation of 80S ribosome, providing a deeper understanding of how viruses recruit and manipulate host factors. IMPORTANCE: The translation of FMDV genomic RNA driven by IRES element is a crucial step for virus infections. Many host proteins are hijacked to regulate FMDV IRES-dependent translation, but the regulatory mechanism remains unknown. Here, we report for the first time that cellular RALY specifically interacts with the IRES of FMDV and negatively regulates viral replication by blocking 80S ribosome assembly on FMDV IRES. Conversely, RALY-mediated inhibition is antagonized by the viral 3C protease by the ubiquitin-proteasome pathway. These results would facilitate further understanding of virus-host interactions and translational control during viral infection.


Assuntos
Vírus da Febre Aftosa , Animais , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Ligação a RNA/genética , Ribossomos/genética , Endopeptidases/metabolismo , Sítios Internos de Entrada Ribossomal , Proteases Virais 3C , Ubiquitinas/genética , Ubiquitinas/metabolismo
6.
Mol Biol Rep ; 51(1): 370, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411732

RESUMO

BACKGROUND: Foot and mouth disease (FMD) is a highly contagious disease that impacts cloven-hoofed animals globally. The illegal trade of livestock between the border regions of Pakistan and Afghanistan can contribute to the spread of this disease. This study focuses on investigating the outbreaks of FMD that occurred in this area from June 2020 to May 2021. METHODS: RESULTS: A total of 233 epithelial tissue samples were collected, and 77% were found positive for FMDV through an antigen-detection by ELISA and molecular conformation through RT-PCR. The study found three serotypes of FMDV dominating in the border area of Pakistan with Afghanistan: O, A, and Asia-1. The outbreak activity was peaked between August/September followed by July/October 2020. Phylogenetic analysis conducted using the VP1 region sequence showed that serotype O isolates belonged to the Middle East-South Asia (ME-SA) topotype, PanAsia-2 lineage, and ANT-10 sub-lineage, while serotype Asia-1 isolates belonged to a novel lineage BD-18.The highest prevalence of serotype O of FMDV was found in cattle and buffalo of 1-2 year age group, while the highest outbreak ratio of serotype O was recorded in goats of 0-1 year age group and sheep of > 2 year age group. The serotype O was more prevalent in male than female sheep. The type A was more prevalent in females of sheep and goats than their corresponding males. The serotype Asia-1 was more prevalent in females of cattle and sheep than their corresponding males. The outbreak epidemiology of FMD varied significantly between various regions, months of study, animal species, age groups, and gender. CONCLUSIONS: The study found that FMD outbreaks in the border area of Pakistan and Afghanistan were diverse and complicated, and that different types of FMDV were circulating. The study recommended effective actions to stop FMD transmission in this area.


Assuntos
Vírus da Febre Aftosa , Feminino , Masculino , Bovinos , Animais , Ovinos , Vírus da Febre Aftosa/genética , Afeganistão/epidemiologia , Paquistão/epidemiologia , Filogenia , Búfalos , Cabras
7.
Appl Microbiol Biotechnol ; 108(1): 81, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38194136

RESUMO

We engineered Saccharomyces cerevisiae to express structural proteins of foot-and-mouth disease virus (FMDV) and produce virus-like particles (VLPs). The gene, which encodes four structural capsid proteins (VP0 (VP4 and VP2), VP3, and VP1), followed by a translational "ribosomal skipping" sequence consisting of 2A and protease 3C, was codon-optimized and chemically synthesized. The cloned gene was used to transform S. cerevisiae 2805 strain. Western blot analysis revealed that the polyprotein consisting of VP0, VP3, and VP1 was processed into the discrete capsid proteins. Western blot analysis of 3C confirmed the presence of discrete 3C protein, suggesting that the 2A sequence functioned as a "ribosomal skipping" signal in the yeast for an internal re-initiation of 3C translation from a monocistronic transcript, thereby indicating polyprotein processing by the discrete 3C protease. Moreover, a band corresponding to only VP2, which was known to be non-enzymatically processed from VP0 to both VP4 and VP2 during viral assembly, further validated the assembly of processed capsid proteins into VLPs. Electron microscopy showed the presence of the characteristic icosahedral VLPs. Our results clearly demonstrate that S. cerevisiae processes the viral structural polyprotein using a viral 3C protease and the resulting viral capsid subunits are assembled into virion particles. KEY POINTS: • Ribosomal skipping by self-cleaving FMDV peptide in S. cerevisiae. • Proteolytic processing of a structural polyprotein from a monocistronic transcript. • Assembly of the processed viral capsid proteins into a virus-like particle.


Assuntos
Vírus da Febre Aftosa , Saccharomyces cerevisiae , Animais , Saccharomyces cerevisiae/genética , Vírus da Febre Aftosa/genética , Proteínas do Capsídeo/genética , Endopeptidases , Peptídeo Hidrolases , Poliproteínas/genética , Proteases Virais 3C
9.
Virology ; 590: 109950, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38104361

RESUMO

Despite routine vaccination, Israel experiences recurrent outbreaks of foot and mouth disease (FMD). We analyzed VP1 coding sequences of viruses isolated during FMD outbreaks from 2001 to 2011 in Israel and neighboring nations. The Israeli strains were aligned with strains from neighboring countries in corresponding years, implying repeated FMD virus incursions. In 2007 a large FMD epidemic, caused by a serotype O virus, occurred in Israel. Bayesian analysis of whole-genome sequences of viruses isolated during this epidemic revealed predominant transmission among extensively farmed beef-cattle and small ruminants. Small ruminants were key in spreading to beef-cattle, which then transmitted the virus to feedlot-cattle. Wild gazelles had a minor role in transmission. The results may suggest probable transmission of FMD virus from the Palestinian Authority to Israel. Targeting extensive farms via enhanced surveillance and vaccination could improve FMDV control. Given cross-border transmission, a collaborative FMD mitigation strategy across the Middle-East is crucial.


Assuntos
Doenças dos Bovinos , Vírus da Febre Aftosa , Febre Aftosa , Bovinos , Animais , Ovinos , Vírus da Febre Aftosa/genética , Israel/epidemiologia , Teorema de Bayes , Filogenia , Febre Aftosa/epidemiologia , Febre Aftosa/prevenção & controle , Sorogrupo , Surtos de Doenças/veterinária , Doenças dos Bovinos/epidemiologia , Análise de Sequência , Ruminantes
10.
Int J Mol Sci ; 24(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38069369

RESUMO

Mast cells can recognize foot-and-mouth disease virus-like particles (FMDV-VLPs) via mannose receptors (MRs) to produce differentially expressed cytokines. The regulatory role of chromatin accessibility in this process is unclear. Bone marrow-derived mast cells (BMMCs) were cultured, and an assay of transposase-accessible chromatin sequencing (ATAC-seq) was applied to demonstrate the regulation of chromatin accessibility in response to the BMMCs' recognition of FMDV-VLPs. A pathway enrichment analysis showed that peaks associated with the nuclear factor-κB (NF-κB), mitogen-activated protein kinase (MAPK), phosphatidylinositol 3 kinase-protein kinase B (PI3K-Akt), and other signaling pathways, especially the NF-κB pathway, were involved in the BMMCs' recognition of VLPs. Moreover, transcription factors including SP1, NRF1, AP1, GATA3, microphthalmia-associated transcription factor (MITF), and NF-κB-p65 may bind to the motifs with altered chromatin accessibility to regulate gene transcription. Furthermore, the expression of NF-κB, interleukin (IL)-9, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ in the BMMCs of the VLP group increased compared with that of the BMMCs in the control group, whereas the expression of IL-10 did not differ significantly between groups. After inhibiting the MRs, the expression of NF-κB, IL-9, TNF-α, and IFN-γ decreased significantly, whereas the expression of IL-10 increased. The expression of MAPK and IL-6 showed no significant change after MR inhibition. This study demonstrated that MRs expressed on BMMCs can affect the NF-κB pathway by changing chromatin accessibility to regulate the transcription of specific cytokines, ultimately leading to the differential expression of cytokines. These data provide a theoretical basis and new ideas for the development of a novel vaccine for FMD.


Assuntos
Vírus da Febre Aftosa , NF-kappa B , Animais , NF-kappa B/metabolismo , Interleucina-10 , Vírus da Febre Aftosa/genética , Fosfatidilinositol 3-Quinases/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação , Citocinas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Cromatina/genética
11.
Sheng Wu Gong Cheng Xue Bao ; 39(12): 4849-4860, 2023 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-38147986

RESUMO

Transient expression is the major method to express foot-and-mouth disease virus (FMDV) capsid proteins in mammalian cells. To achieve stable expression of FMDV capsid proteins and efficient assembly of virus like particles (VLPs) in cells, the plasmids of piggyBac (PB) transposon-constitutive expression and PB transposon-tetracycline (Tet) inducible expression vectors were constructed. The function of the plasmids was tested by fluorescent proteins. By adding antibiotics, the constitutive cell pools (C-WT, C-L127P) expressing P12A3C (WT/L127P) genes and the inducible cell pools (I-WT, I-L127P) expressing P12A3C (WT/L127P) genes were generated. The genes of green fluorescent protein, 3C protease and reverse tetracycline transactivator (rtTA) were integrated into chromosome, which was confirmed by fluorescence observation and PCR testing. The cell pool I-L127P has a stronger production capacity of capsid proteins and VLPs, which was confirmed by Western blotting and enzyme linked immunosorbent assay (ELISA), respectively. In conclusion, inducing the chromosomal expression of FMDV capsid proteins was firstly reported, which may facilitate the technical process of mammalian production of FMDV VLPs vaccine and the construction of mammalian inducible expression systems for other proteins.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Vacinas Virais , Animais , Vírus da Febre Aftosa/genética , Proteínas do Capsídeo , Proteínas Virais/metabolismo , Febre Aftosa/prevenção & controle , Tetraciclinas/metabolismo , Anticorpos Antivirais , Mamíferos/metabolismo
12.
BMC Res Notes ; 16(1): 323, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37941022

RESUMO

OBJECTIVE: Determining the serotype of circulating virus strains is important in implementing effective vaccination. In this study, Foot-and-Mouth Disease (FMD) Southern African territory 2 (SAT2) specific primers and TaqMan probe were designed towards rapid SAT2 detection and serotyping. The primers were tested by endpoint reverse transcription (RT) polymerase chain reaction (PCR) and quantitative PCR (RT-qPCR) using the vaccine strain SAT2035. The SAT2 serotype-specific RT-qPCR assay was compared with currently used ELISA and VP1 sequencing using Cohen's kappa statistics. RESULTS: The primers yielded amplicons of band size 190 bp during endpoint RT-PCR. When coupled with the probe, the primers reaction efficiency was determined to be 99% with an r2 value of 0.994. The results show that the SAT2 assay has comparable performance to VP1 sequencing (k = 1) and a moderate degree of agreement with ELISA (k = 0.571). The data shows that the newly designed assay could be considered for serotyping of SAT2 strains. However, for this assay to be complete there is a need to design effective SAT1 and SAT3 primers and probes that can be multiplexed to target other serotypes that co-circulate within relevant FMD endemic pools. For future implementation of the assay there is also a need to increase the number of field samples towards validation of the assay.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Animais , Vírus da Febre Aftosa/genética , Sorotipagem/métodos , Febre Aftosa/diagnóstico , Febre Aftosa/epidemiologia , Febre Aftosa/prevenção & controle , Sorogrupo , África Austral
13.
J Gen Virol ; 104(7)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37436428

RESUMO

Foot-and-mouth-disease virus (FMDV), the aetiological agent responsible for foot-and-mouth disease (FMD), is a member of the genus Aphthovirus within the family Picornavirus. In common with all picornaviruses, replication of the single-stranded positive-sense RNA genome involves synthesis of a negative-sense complementary strand that serves as a template for the synthesis of multiple positive-sense progeny strands. We have previously employed FMDV replicons to examine viral RNA and protein elements essential to replication, but the factors affecting differential strand production remain unknown. Replicon-based systems require transfection of high levels of RNA, which can overload sensitive techniques such as quantitative PCR, preventing discrimination of specific strands. Here, we describe a method in which replicating RNA is labelled in vivo with 5-ethynyl uridine. The modified base is then linked to a biotin tag using click chemistry, facilitating purification of newly synthesised viral genomes or anti-genomes from input RNA. This selected RNA can then be amplified by strand-specific quantitative PCR, thus enabling investigation of the consequences of defined mutations on the relative synthesis of negative-sense intermediate and positive-strand progeny RNAs. We apply this new approach to investigate the consequence of mutation of viral cis-acting replication elements and provide direct evidence for their roles in negative-strand synthesis.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Picornaviridae , Animais , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/metabolismo , Replicação Viral/genética , Picornaviridae/genética , RNA Viral/metabolismo
14.
Virus Res ; 333: 199140, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37268276

RESUMO

Foot and mouth disease (FMD) has engendered large scale socioeconomic crises on numerous occasions owing to its extreme contagiousness, transboundary nature, complicated epidemiology, negative impact on productivity, trade embargo, and need for intensive surveillance and expensive control measures. Emerging FMD virus variants have been predicted to have originated and spread from endemic Pool 2, native to South Asia, to other parts of the globe. In this study, 26 Indian serotype A isolates sampled between the year 2015 and 2022 were sequenced for the VP1 region. BLAST and maximum likelihood phylogeny suggest emergence of a novel genetic group within genotype 18, named here as 'A/ASIA/G-18/2019' lineage, that is restricted so far only to India and its eastern neighbour, Bangladesh. The lineage subsequent to its first appearance in 2019 seems to have displaced all other prevalent strains, in support of the phenomenon of 'genotype/lineage turnover'. It has diversified into two distinct sub-clusters, reflecting a phase of active evolution. The rate of evolution of the VP1 region for the Indian serotype A dataset was estimated to be 6.747 × 10-3 substitutions/site/year. India is implementing a vaccination centric FMD control programme. The novel lineage showed good antigenic match with the proposed vaccine candidate A IND 27/2011 when tested in virus neutralization test, while the existing vaccine strain A IND 40/2000 showed homology with only 31% of the isolates. Therefore, in order to combat this challenge of antigenic divergence, A IND 27/2011 could be the preferred strain in the Indian vaccine formulations.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Animais , Vírus da Febre Aftosa/genética , Sorogrupo , Antígenos Virais , Índia/epidemiologia , Filogenia
15.
Curr Microbiol ; 80(8): 245, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328626

RESUMO

A one-step TaqMan probe-based RT-qPCR assay in the duplex format simultaneously targeting FMD Virus (FMDV) 2B NSP-coding region and 18S rRNA housekeeping gene was developed and evaluated. The duplex RT-qPCR assay specifically detected FMDV genome in both infected cell culture suspensions and a variety of clinical samples such as FMD-affected tongue/feet epithelium, oral/nasal swabs, milk and oro-pharyngeal fluids. The RT-qPCR assay was found to be highly sensitive, since the assay was 105-fold more sensitive than the traditional FMDV detecting antigen-ELISA (Ag-ELISA) and 102-fold better sensitive than both virus isolation and agarose gel-based RT-multiplex PCR. In addition, the assay could detect up to 100 copies of FMDV genome per reaction. In the epithelial samples (n = 582) collected from the FMD-affected animals, the diagnostic sensitivity was 100% (95% CI 99-100%). Similarly, all the FMDV-negative samples (n = 65) tested were confirmed negative by the new RT-qPCR assay, corresponding to 100% diagnostic specificity (95% CI = 94-100%). Further, the duplex RT-qPCR assay proved to be robust, showing an inter-assay co-efficient of variations ranging from 1.4 to 3.56% for FMDV-2B gene target, and from 2 to 4.12% for 18S rRNA gene target. While analyzing FMDV-infected cell culture suspension, a fairly strong positive correlation (correlation coefficient = 0.85) was observed between 2B-based RT-qPCR and WOAH-approved 5'UTR RT-qPCR assays. Therefore, the one-step RT-qPCR assay developed here with an internal control could be used for rapid, effective, and reliable detection of FMDV in pan-serotypic manner, and has the potential for routine diagnosis of FMDV in high throughput manner.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Animais , Febre Aftosa/diagnóstico , Vírus da Febre Aftosa/genética , Sensibilidade e Especificidade , Sorogrupo , Reação em Cadeia da Polimerase Multiplex
16.
J Vet Sci ; 24(3): e40, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37271508

RESUMO

Analysis of the VP1 gene sequence of the foot and mouth disease virus (FMDV) is critical to understanding viral evolution and disease epidemiology. A standard set of primers have been used for the detection and sequence analysis of the VP1 gene of FMDV directly from suspected clinical samples with limited success. The study validated VP1-specific degenerate primer-based reverse transcription polymerase chain reaction (RT-PCR) for the qualitative detection and sequencing of serotype O FMDV lineages circulating in India. The novel degenerate primer-based RT-PCR amplifying the VP1 gene can circumvent the genetic heterogeneity observed in viruses after cell culture adaptation and facilitate precise viral gene sequence analysis from clinical samples.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Animais , Vírus da Febre Aftosa/genética , Sorogrupo , Febre Aftosa/epidemiologia , Sorotipagem/veterinária , Heterogeneidade Genética
17.
PLoS Pathog ; 19(5): e1011373, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37126532

RESUMO

Picornavirus genome replication takes place in specialized intracellular membrane compartments that concentrate viral RNA and proteins as well as a number of host factors that also participate in the process. The core enzyme in the replication machinery is the viral RNA-dependent RNA polymerase (RdRP) 3Dpol. Replication requires the primer protein 3B (or VPg) attached to two uridine molecules. 3B uridylylation is also catalysed by 3Dpol. Another critical interaction in picornavirus replication is that between 3Dpol and the precursor 3AB, a membrane-binding protein responsible for the localization of 3Dpol to the membranous compartments at which replication occurs. Unlike other picornaviruses, the animal pathogen foot-and-mouth disease virus (FMDV), encodes three non-identical copies of the 3B (3B1, 3B2, and 3B3) that could be specialized in different functions within the replication complex. Here, we have used a combination of biophysics, molecular and structural biology approaches to characterize the functional binding of FMDV 3B1 to the base of the palm of 3Dpol. The 1.7 Å resolution crystal structure of the FMDV 3Dpol -3B1 complex shows that 3B1 simultaneously links two 3Dpol molecules by binding at the bottom of their palm subdomains in an almost symmetric way. The two 3B1 contact surfaces involve a combination of hydrophobic and basic residues at the N- (G5-P6, R9; Region I) and C-terminus (R16, L19-P20; Region II) of this small protein. Enzyme-Linked Immunosorbent Assays (ELISA) show that the two 3B1 binding sites play a role in 3Dpol binding, with region II presenting the highest affinity. ELISA assays show that 3Dpol has higher binding affinity for 3B1 than for 3B2 or 3B3. Membrane-based pull-down assays show that 3B1 region II, and to a lesser extent also region I play essential roles in mediating the interaction of 3AB with the polymerase and its recruitment to intracellular membranes.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Picornaviridae , Animais , Vírus da Febre Aftosa/genética , Replicação Viral/genética , Picornaviridae/metabolismo , RNA Viral/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas de Membrana/metabolismo
18.
Sheng Wu Gong Cheng Xue Bao ; 39(4): 1548-1561, 2023 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-37154322

RESUMO

Foot-and-mouth disease (FMD) is an acute, severe, and highly contagious infectious disease caused by foot-and-mouth disease virus (FMDV), which seriously endangers the development of animal husbandry. The inactivated FMD vaccine is the main product for the prevention and control of FMD, which has been successfully applied to control the pandemic and outbreak of FMD. However, the inactivated FMD vaccine also has problems, such as the instability of antigen, the risk of spread of the virus due to incomplete inactivation during vaccine production, and the high cost of production. Compared with traditional microbial and animal bioreactors, production of antigens in plants through transgenic technology has some advantages including low cost, safety, convenience, and easy storage and transportation. Moreover, since antigens produced from plants can be directly used as edible vaccines, no complex processes of protein extraction and purification are required. But, there are some problems for the production of antigens in plants, which include low expression level and poor controllability. Thus, expressing the antigens of FMDV in plants may be an alternative mean for production of FMD vaccine, which has certain advantages but still need to be continuously optimized. Here we review the main strategies for expressing active proteins in plants, as well as the research progress on the expression of FMDV antigens in plants. We also discuss the current problems and challenges encountered, with the aim to facilitate related research.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Vacinas Virais , Animais , Vírus da Febre Aftosa/genética , Febre Aftosa/prevenção & controle , Antígenos Virais/genética
19.
J Virol Methods ; 318: 114754, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37230193

RESUMO

Early and definitive disease diagnosis is critical for effective disease control. 50% buffered glycerine is commonly used viral transport medium, which is not always available and required cold chain. Tissues samples archived in 10% neutral buffered formalin (NBF) can preserve nucleic acid that can be used in molecular studies and disease diagnosis. The present study's goal was to detect the foot-and-mouth disease (FMD) viral genome in formalin-fixed archived tissue which may avoid cold chain during transportation. This study used FMD suspected samples preserved in 10% neutral buffered formalin from 0 to 730 days post fixation (DPF). All archived tissues were positive for FMD viral genome by multiplex RT-PCR and RT-qPCR up to 30 DPF, whereas archived epithelium tissues and thigh muscle were positive for FMD vial genome up to 120 DPF. FMD viral genome was detected in cardiac muscle up to 60 DPF and 120 DPF, respectively. The findings suggest that 10% neutral buffered formalin could be used for sample preservation and transportation for timely and accurate FMD diagnosis. More samples need to be tested before implementing the use of 10% neutral buffered formalin as a preservative and transportation medium. The technique may add value in ensuring biosafety measures for creation during disease free zone as well.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Animais , Febre Aftosa/diagnóstico , Formaldeído , Vírus da Febre Aftosa/genética
20.
J Virol Methods ; 319: 114753, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37209781

RESUMO

Foot-and-mouth disease (FMD) is a highly contagious viral vesicular disease, causing devastating losses to the livestock industry. A diagnostic method that enables quick decisions is required to control the disease, especially in FMD-free countries. Although conventional real-time reverse transcription polymerase chain reaction (RT-PCR) is a highly sensitive method widely used for the diagnosis of FMD, a time lag caused by the transport of samples to a laboratory may allow the spread of FMD. Here, we evaluated a real-time RT-PCR system using a portable PicoGene PCR1100 device for FMD diagnosis. This system could detect the synthetic FMD viral RNA within 20 min with high sensitivity compared to a conventional real-time RT-PCR. Furthermore, the Lysis Buffer S for crude nucleic extraction improved the viral RNA detection of this system in a homogenate of vesicular epithelium samples collected from FMD virus-infected animals. Furthermore, this system could detect the viral RNA in crude extracts prepared using the Lysis Buffer S from the vesicular epithelium samples homogenized using a Finger Masher tube, which allows easy homogenization without any equipment, with a high correlation compared to the standard method. Thus, the PicoGene device system can be utilized for the rapid and pen-side diagnosis of FMD.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Animais , Febre Aftosa/diagnóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sensibilidade e Especificidade , Vírus da Febre Aftosa/genética , RNA Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...